

MANUAL DE PRÁCTICAS DE LABORATORIO Ingeniería Clínica Laboratorio

Programa Académico Plan de Estudios Fecha de elaboración Versión del Documento Ing. Biomédica 2020 30/06/2025

Dra. Martha Patricia Patiño Fierro **Rectora**

Mtra. Ana Lisette Valenzuela Molina Encargada del Despacho de la Secretaría General Académica

Mtro. José Antonio Romero Montaño Secretario General Administrativo

Lic. Jorge Omar Herrera Gutiérrez

Encargado de Despacho de Secretario

General de Planeación

Tabla de contenido

INTRODUCCIÓN	4
IDENTIFICACIÓN	5
Carga Horaria del alumno	5
Consignación del Documento	5
MATRIZ DE CORRESPONDENCIA	6
NORMAS DE SEGURIDAD Y BUENAS PRÁCTICAS	7
Reglamento general del laboratorio	7
Reglamento de uniforme	7
Uso adecuado del equipo y materiales	7
Manejo y disposición de residuos peligrosos	7
Procedimientos en caso de emergencia	7
RELACIÓN DE PRÁCTICAS DE LABORATORIO POR ELEMENTO DE COMPETENCIA	8
PRÁCTICAS	3
FUENTES DE INFORMACIÓN	5
NORMAS TÉCNICAS APLICABLES	6
ANEXOS	3

INTRODUCCIÓN

Como parte de las herramientas esenciales para la formación académica de los estudiantes de la Universidad Estatal de Sonora, se definen manuales de práctica de laboratorio como elemento en el cual se define la estructura normativa de cada práctica y/o laboratorio, además de representar una guía para la aplicación práctica del conocimiento y el desarrollo de las competencias clave en su área de estudio. Su diseño se encuentra alineado con el modelo educativo institucional, el cual privilegia el aprendizaje basado en competencias, el aprendizaje activo y la conexión con escenarios reales.

Con el propósito de fortalecer la autonomía de los estudiantes, su pensamiento crítico y sus habilidades para la resolución de problemas, las prácticas de laboratorio integran estrategias didácticas como el aprendizaje basado en proyectos, el trabajo colaborativo, la experimentación guiada y el uso de tecnologías educativas. De esta manera, se promueve un proceso de enseñanza-aprendizaje dinámico, en el que los estudiantes no solo adquieren conocimientos teóricos, sino que también desarrollan habilidades prácticas y reflexivas para su desempeño profesional.

Propósito del manual

Este manual de prácticas de laboratorio tiene como propósito establecer la estructura normativa y metodológica para el desarrollo de actividades prácticas en la asignatura de Ingeniería Clínica, proporcionando una guía para la aplicación práctica del conocimiento teórico y el desarrollo de competencias profesionales en el ámbito de la administración y gestión de tecnologías sanitarias.

Justificación de su uso en el programa académico

La asignatura de Ingeniería Clínica es fundamental en la formación del Ingeniero Biomédico, ya que proporciona las bases para la administración idónea de tecnologías sanitarias en instituciones de salud. Las prácticas de laboratorio permiten al estudiante aplicar los conocimientos teóricos en situaciones reales y simuladas, desarrollando habilidades prácticas esenciales para su desempeño profesional en el sector hospitalario.

Competencias a desarrollar

Competencias blandas

- Trabajo en equipo: Capacidad para colaborar efectivamente en equipos multidisciplinarios
- Aprendizaje: Habilidad para el autoaprendizaje y la actualización continua
- Comunicación: Capacidad para comunicar efectivamente conceptos técnicos y normativos

Competencias disciplinares

Conocimiento de normatividad vigente para instituciones de salud

- Comprensión de estructura organizacional hospitalaria
- Fundamentos de gestión de tecnologías sanitarias
- Manejo de herramientas de evaluación de dispositivos médicos

Competencias profesionales

- Aplicación de regulaciones en materia de infraestructura hospitalaria y equipamiento médico
- Gestión y evaluación de dispositivos médicos en entornos clínicos
- Contribución a la calidad de atención al paciente a través de la administración de tecnologías sanitarias

IDENTIFICACIÓN

Nombre de la Asignatura Ir		Ingeniería Clínica	
Clave	042CE064	Créditos	7
Asignaturas	033CE022	Plan de	2020
Antecedentes		Estudios	

Área de Competencia	Competencia del curso
Profesionales o Profesionalizantes	Relacionar las bases de la administración de las tecnologías sanitarias a fin de coadyuvar a la calidad de atención al paciente a través del aprendizaje de estructura organizacional y funcionamiento de hospitales y del departamento de ingeniería biomédica en apego a las regulaciones vigentes.

Carga Horaria de la asignatura

Horas Supervisadas		Haraa Indanandiantaa	Total de Haras	
Aula	Laboratorio	Plataforma	Horas Independientes	Total de Horas
2	3	0	2	7

Consignación del Documento

Unidad Académica
Fecha de elaboración
Responsables del
diseño
Validación
Recepcíón

Unidad Académica Hermosillo 30/06/2025 del Andres Monreal Hernandez

Coordinación de Procesos Educativos

MATRIZ DE CORRESPONDENCIA

Señalar la relación de cada práctica con las competencias del perfil de egreso

PRÁCTICA	PERFIL DE EGRESO
Práctica 1: Análisis de normatividad	Gestión de tecnología médica - Conocer
hospitalaria	equipos médicos y su aplicación para el
	entorno de la prevención, diagnóstico,
	tratamiento y rehabilitación de la salud
Práctica 2: Estructura organizacional	Dar soluciones de forma innovadora y
hospitalaria	creativa respecto a los problemas que
	enfrenta el sector salud
Práctica 3: Gestión de inventario de equipo	Gestión de tecnología médica - Detectar
médico	las áreas de oportunidad para mejorar las
	condiciones de vida del ser humano
Práctica 4: Programa de mantenimiento	Diseñar propuestas eficientes para
preventivo	disminuir las necesidades de las
	instituciones del sector salud

NORMAS DE SEGURIDAD Y BUENAS PRÁCTICAS

Reglamento general del laboratorio
Texto
Reglamento de uniforme
Texto
Uso adecuado del equipo y materiales
Texto
Manejo y disposición de residuos peligrosos
Texto
Procedimientos en caso de emergencia
Texto

RELACIÓN DE PRÁCTICAS DE LABORATORIO POR ELEMENTO DE COMPETENCIA

Elemento de Competencia al que pertenece la práctica

Elemento de Competencia I

Comprender la normatividad vigente para instituciones de atención a la salud en materia de infraestructura hospitalaria y equipamiento médico, mediante el análisis de casos del departamento de ingeniería biomédica a través del trabajo en equipo, con la finalidad de coadyuvar a la administración idónea de tecnologías sanitarias.

PRÁCTICA	NOMBRE	COMPETENCIA
Práctica No. 1	Análisis de normatividad hospitalaria	Analizar casos de cumplimiento de normatividad en ambientes hospitalarios mediante trabajo en equipo para identificar el rol del ingeniero clínico en la aplicación de regulaciones sanitarias con responsabilidad profesional
Práctica No. 2	Evaluación de infraestructura y equipamiento	Evaluar el cumplimiento de normas de infraestructura hospitalaria y dispositivos médicos a través del análisis grupal para contribuir a la administración idónea de tecnologías sanitarias con compromiso ético

RELACIÓN DE PRÁCTICAS DE LABORATORIO POR ELEMENTO DE COMPETENCIA

Elemento de Competencia al que pertenece la práctica

Elemento de Competencia II

Identificar los aspectos principales de la organización y funcionamiento del departamento de ingeniería clínica de un hospital a través de la normatividad vigente en materia de infraestructura hospitalaria para facilitar, a través del aprendizaje y la comunicación, el rol del ingeniero clínico.

PRÁCTICA	NOMBRE	COMPETENCIA
Práctica No. 3	Estructura organizacional hospitalaria	Identificar la estructura organizacional del departamento de ingeniería clínica mediante visita práctica para comprender el funcionamiento hospitalario con habilidades de comunicación efectiva

RELACIÓN DE PRÁCTICAS DE LABORATORIO POR ELEMENTO DE COMPETENCIA

Elemento de Competencia al que pertenece la práctica

Elemento de Competencia III

Aplicar Herramientas de gestión y evaluación de dispositivos médicos con base a las regulaciones vigentes en materia de infraestructura hospitalaria y equipamiento médico a fin de coadyuvar a través del trabajo en equipo, a la calidad y atención al paciente.

PRÁCTICA	NOMBRE	COMPETENCIA
Práctica No. 4	Gestión de inventario de equipo médico	Desarrollar un sistema de gestión de inventario de dispositivos médicos aplicando normativas de la OMS para optimizar la administración hospitalaria mediante trabajo colaborativo
Práctica No. 5	Programa de mantenimiento preventivo	Diseñar un programa de mantenimiento preventivo de equipos médicos basado en estándares internacionales para garantizar la calidad de atención al paciente con enfoque de trabajo en equipo

PRÁCTICAS

NOMBRE DE LA PRÁCTICA

ANÁLISIS DE NORMATIVIDAD HOSPITALARIA

COMPETENCIA DE LA PRÁCTICA

Analizar casos de cumplimiento de normatividad en ambientes hospitalarios mediante trabajo en equipo para identificar el rol del ingeniero clínico en la aplicación de regulaciones sanitarias con responsabilidad profesional.

FUNDAMENTO TÉORICO

La normatividad hospitalaria establece los requisitos mínimos que deben cumplir las instituciones de salud en materia de infraestructura, equipamiento médico y servicios. Las principales normas aplicables incluyen la NOM-016-SSA3-2012 para características mínimas de infraestructura y equipamiento, la NOM-001-SEDE-2012 para instalaciones eléctricas, y estándares internacionales como ISO 13485 e IEC 60601. El ingeniero clínico debe conocer y aplicar esta normatividad para garantizar la seguridad del paciente y la calidad de los servicios de salud.

MATERIALES, EQUIPAMIENTO Y/O REACTIVOS

- Documentos normativos: NOM-016-SSA3-2012, NOM-001-SEDE-2012, ISO 13485, IEC 60601
- Casos de estudio proporcionados por el facilitador
- Computadora con acceso a internet
- de procesamiento de texto
- Formato de análisis de casos
- Material de apoyo bibliográfico

PROCEDIMIENTO O METODOLOGÍA

Fase de preparación

- Formar equipos de 4-5 estudiantes
- Revisar el caso asignado por el facilitador
- Identificar las normativas aplicables al caso

Fase de análisis

- Analizar el cumplimiento de cada normativa en el caso presentado
- Identificar deficiencias o áreas de mejora
- Proponer soluciones basadas en la normatividad vigente

Fase de presentación

- Presentar los resultados del análisis ante el grupo
- Discutir las propuestas de mejora
- Recibir retroalimentación del facilitador y compañeros

RESULTADOS ESPERADOS

Identificación correcta de normativas aplicables Análisis detallado del cumplimiento normativo Propuestas de mejora viables y fundamentadas Comprensión del rol del ingeniero clínico en el cumplimiento normativo

ANÁLISIS DE RESULTADOS

- ¿Qué normativas son más críticas para la seguridad del paciente?
- ¿Cuáles son las principales deficiencias encontradas en el caso analizado?
- ¿Cómo puede el ingeniero clínico contribuir al cumplimiento normativo?
- ¿Qué impacto tienen las deficiencias normativas en la calidad de atención?

CONCLUSIONES Y REFLEXIONES

Los estudiantes deben reflexionar sobre la importancia del cumplimiento normativo en instituciones de salud y el papel fundamental del ingeniero clínico como garante de la seguridad y calidad. Se debe enfatizar la responsabilidad ética y profesional en la aplicación de regulaciones sanitarias.

ACTIVIDADES COMPLEMENTARIAS

Investigar casos reales de incumplimiento normativo y sus consecuencias Elaborar una propuesta de lista de verificación para auditorías normativas Analizar normativas internacionales equivalentes

EVALUACIÓN Y EVIDENCIAS DE APRENDIZAJE		
Criterios de evaluación	Identificación correcta de normativas (25%)	
	Calidad del análisis (30%)	
	Propuestas de mejora (25%)	
	Trabajo en equipo y presentación (20%)	
Rúbricas o listas de	Lista de cotejo para cumplimiento normativo	
cotejo para valorar	Rúbrica de evaluación de tecnologías médicas	
desempeño Rúbrica de responsabilidad ética profesional		
Formatos de reporte de	Formato de evaluación de dispositivos médicos	
prácticas	Plantilla de protocolos clínicos	
	Formato de análisis de riesgo-beneficio	

NOMBRE DE LA PRÁCTICA

COMPETENCIA DE LA PRÁCTICA

ANÁLISIS DE NORMATIVIDAD HOSPITALARIA

Analizar casos de cumplimiento de normatividad en ambientes hospitalarios mediante trabajo en equipo para identificar el rol del ingeniero clínico en la aplicación de regulaciones sanitarias con responsabilidad profesional.

FUNDAMENTO TÉORICO

La normatividad hospitalaria establece los requisitos mínimos que deben cumplir las instituciones de salud en materia de infraestructura, equipamiento médico y servicios. Las principales normas aplicables incluyen la NOM-016-SSA3-2012 para características mínimas de infraestructura y equipamiento, la NOM-001-SEDE-2012 para instalaciones eléctricas, y estándares internacionales como ISO 13485 e IEC 60601. El ingeniero clínico debe conocer y aplicar esta normatividad para garantizar la seguridad del paciente y la calidad de los servicios de salud.

MATERIALES, EQUIPAMIENTO Y/O REACTIVOS

- Documentos normativos: NOM-016-SSA3-2012, NOM-001-SEDE-2012, ISO 13485, IEC 60601
- Casos de estudio proporcionados por el facilitador
- Computadora con acceso a internet
- de procesamiento de texto
- Formato de análisis de casos
- Material de apoyo bibliográfico

PROCEDIMIENTO O METODOLOGÍA

Fase de preparación

- Formar equipos de 4-5 estudiantes
- Revisar el caso asignado por el facilitador
- Identificar las normativas aplicables al caso

Fase de análisis

- Analizar el cumplimiento de cada normativa en el caso presentado
- Identificar deficiencias o áreas de mejora
- Proponer soluciones basadas en la normatividad vigente

Fase de presentación

- Presentar los resultados del análisis ante el grupo
- Discutir las propuestas de mejora
- Recibir retroalimentación del facilitador y compañeros

RESULTADOS ESPERADOS

Identificación correcta de normativas aplicables Análisis detallado del cumplimiento normativo Propuestas de mejora viables y fundamentadas Comprensión del rol del ingeniero clínico en el cumplimiento normativo

ANÁLISIS DE RESULTADOS

- ¿Qué normativas son más críticas para la seguridad del paciente?
- ¿Cuáles son las principales deficiencias encontradas en el caso analizado?
- ¿Cómo puede el ingeniero clínico contribuir al cumplimiento normativo?
- ¿Qué impacto tienen las deficiencias normativas en la calidad de atención?

CONCLUSIONES Y REFLEXIONES

Los estudiantes deben reflexionar sobre la importancia del cumplimiento normativo en instituciones de salud y el papel fundamental del ingeniero clínico como garante de la seguridad y calidad. Se debe enfatizar la responsabilidad ética y profesional en la aplicación de regulaciones sanitarias.

ACTIVIDADES COMPLEMENTARIAS

Investigar casos reales de incumplimiento normativo y sus consecuencias Elaborar una propuesta de lista de verificación para auditorías normativas Analizar normativas internacionales equivalentes

EVALUACIÓN Y EVIDENCIAS DE APRENDIZAJE		
Criterios de evaluación	Identificación correcta de normativas (25%)	
	Calidad del análisis (30%)	
	Propuestas de mejora (25%)	
	Trabajo en equipo y presentación (20%)	
Rúbricas o listas de	Lista de cotejo para cumplimiento normativo	
cotejo para valorar	Rúbrica de evaluación de tecnologías médicas	
desempeño	Rúbrica de responsabilidad ética profesional	
Formatos de reporte de	Formato de evaluación de dispositivos médicos	
prácticas	Plantilla de protocolos clínicos	
	Formato de análisis de riesgo-beneficio	

NOMBRE DE LA PRÁCTICA

COMPETENCIA DE LA PRÁCTICA

ANÁLISIS DE NORMATIVIDAD HOSPITALARIA

Analizar casos de cumplimiento de normatividad en ambientes hospitalarios mediante trabajo en equipo para identificar el rol del ingeniero clínico en la aplicación de regulaciones sanitarias con responsabilidad profesional.

FUNDAMENTO TÉORICO

La normatividad hospitalaria establece los requisitos mínimos que deben cumplir las instituciones de salud en materia de infraestructura, equipamiento médico y servicios. Las principales normas aplicables incluyen la NOM-016-SSA3-2012 para características mínimas de infraestructura y equipamiento, la NOM-001-SEDE-2012 para instalaciones eléctricas, y estándares internacionales como ISO 13485 e IEC 60601. El ingeniero clínico debe conocer y aplicar esta normatividad para garantizar la seguridad del paciente y la calidad de los servicios de salud.

MATERIALES, EQUIPAMIENTO Y/O REACTIVOS

- Documentos normativos: NOM-016-SSA3-2012, NOM-001-SEDE-2012, ISO 13485, IEC 60601
- Casos de estudio proporcionados por el facilitador
- Computadora con acceso a internet
- de procesamiento de texto
- Formato de análisis de casos
- Material de apoyo bibliográfico

PROCEDIMIENTO O METODOLOGÍA

Fase de preparación

- Formar equipos de 4-5 estudiantes
- Revisar el caso asignado por el facilitador
- Identificar las normativas aplicables al caso

Fase de análisis

- Analizar el cumplimiento de cada normativa en el caso presentado
- Identificar deficiencias o áreas de mejora
- Proponer soluciones basadas en la normatividad vigente

Fase de presentación

- Presentar los resultados del análisis ante el grupo
- Discutir las propuestas de mejora
- Recibir retroalimentación del facilitador y compañeros

RESULTADOS ESPERADOS

Identificación correcta de normativas aplicables Análisis detallado del cumplimiento normativo Propuestas de mejora viables y fundamentadas Comprensión del rol del ingeniero clínico en el cumplimiento normativo

ANÁLISIS DE RESULTADOS

- ¿Qué normativas son más críticas para la seguridad del paciente?
- ¿Cuáles son las principales deficiencias encontradas en el caso analizado?
- ¿Cómo puede el ingeniero clínico contribuir al cumplimiento normativo?
- ¿Qué impacto tienen las deficiencias normativas en la calidad de atención?

CONCLUSIONES Y REFLEXIONES

Los estudiantes deben reflexionar sobre la importancia del cumplimiento normativo en instituciones de salud y el papel fundamental del ingeniero clínico como garante de la seguridad y calidad. Se debe enfatizar la responsabilidad ética y profesional en la aplicación de regulaciones sanitarias.

ACTIVIDADES COMPLEMENTARIAS

Investigar casos reales de incumplimiento normativo y sus consecuencias Elaborar una propuesta de lista de verificación para auditorías normativas Analizar normativas internacionales equivalentes

EVALUACIÓN Y EVIDENCIAS DE APRENDIZAJE		
Criterios de evaluación	Identificación correcta de normativas (25%)	
	Calidad del análisis (30%)	
	Propuestas de mejora (25%)	
	Trabajo en equipo y presentación (20%)	
Rúbricas o listas de	Lista de cotejo para cumplimiento normativo	
cotejo para valorar	Rúbrica de evaluación de tecnologías médicas	
desempeño	Rúbrica de responsabilidad ética profesional	
Formatos de reporte de	Formato de evaluación de dispositivos médicos	
prácticas	Plantilla de protocolos clínicos	
	Formato de análisis de riesgo-beneficio	

NOMBRE DE LA PRÁCTICA

COMPETENCIA DE LA PRÁCTICA

ANÁLISIS DE NORMATIVIDAD HOSPITALARIA

Analizar casos de cumplimiento de normatividad en ambientes hospitalarios mediante trabajo en equipo para identificar el rol del ingeniero clínico en la aplicación de regulaciones sanitarias con responsabilidad profesional.

FUNDAMENTO TÉORICO

La normatividad hospitalaria establece los requisitos mínimos que deben cumplir las instituciones de salud en materia de infraestructura, equipamiento médico y servicios. Las principales normas aplicables incluyen la NOM-016-SSA3-2012 para características mínimas de infraestructura y equipamiento, la NOM-001-SEDE-2012 para instalaciones eléctricas, y estándares internacionales como ISO 13485 e IEC 60601. El ingeniero clínico debe conocer y aplicar esta normatividad para garantizar la seguridad del paciente y la calidad de los servicios de salud.

MATERIALES, EQUIPAMIENTO Y/O REACTIVOS

- Documentos normativos: NOM-016-SSA3-2012, NOM-001-SEDE-2012, ISO 13485, IEC 60601
- Casos de estudio proporcionados por el facilitador
- Computadora con acceso a internet
- de procesamiento de texto
- Formato de análisis de casos
- Material de apoyo bibliográfico

PROCEDIMIENTO O METODOLOGÍA

Fase de preparación

- Formar equipos de 4-5 estudiantes
- Revisar el caso asignado por el facilitador
- Identificar las normativas aplicables al caso

Fase de análisis

- Analizar el cumplimiento de cada normativa en el caso presentado
- Identificar deficiencias o áreas de mejora
- Proponer soluciones basadas en la normatividad vigente

Fase de presentación

- Presentar los resultados del análisis ante el grupo
- Discutir las propuestas de mejora
- Recibir retroalimentación del facilitador y compañeros

RESULTADOS ESPERADOS

Identificación correcta de normativas aplicables Análisis detallado del cumplimiento normativo Propuestas de mejora viables y fundamentadas Comprensión del rol del ingeniero clínico en el cumplimiento normativo

ANÁLISIS DE RESULTADOS

- ¿Qué normativas son más críticas para la seguridad del paciente?
- ¿Cuáles son las principales deficiencias encontradas en el caso analizado?
- ¿Cómo puede el ingeniero clínico contribuir al cumplimiento normativo?
- ¿Qué impacto tienen las deficiencias normativas en la calidad de atención?

CONCLUSIONES Y REFLEXIONES

Los estudiantes deben reflexionar sobre la importancia del cumplimiento normativo en instituciones de salud y el papel fundamental del ingeniero clínico como garante de la seguridad y calidad. Se debe enfatizar la responsabilidad ética y profesional en la aplicación de regulaciones sanitarias.

ACTIVIDADES COMPLEMENTARIAS

Investigar casos reales de incumplimiento normativo y sus consecuencias Elaborar una propuesta de lista de verificación para auditorías normativas Analizar normativas internacionales equivalentes

EVALUACIÓN Y EVIDENCIAS DE APRENDIZAJE		
Criterios de evaluación	Identificación correcta de normativas (25%)	
	Calidad del análisis (30%)	
	Propuestas de mejora (25%)	
	Trabajo en equipo y presentación (20%)	
Rúbricas o listas de	Lista de cotejo para cumplimiento normativo	
cotejo para valorar	Rúbrica de evaluación de tecnologías médicas	
desempeño	Rúbrica de responsabilidad ética profesional	
Formatos de reporte de	Formato de evaluación de dispositivos médicos	
prácticas	Plantilla de protocolos clínicos	
	Formato de análisis de riesgo-beneficio	

NOMBRE DE LA PRÁCTICA

EVALUACIÓN DE INFRAESTRUCTURA Y EQUIPAMIENTO

COMPETENCIA DE LA PRÁCTICA

Evaluar el cumplimiento de normas de infraestructura hospitalaria y dispositivos médicos a través del análisis grupal para contribuir a la administración idónea de tecnologías sanitarias con compromiso ético.

FUNDAMENTO TÉORICO

La evaluación de infraestructura hospitalaria y equipamiento médico requiere el conocimiento de especificaciones técnicas, normas de seguridad eléctrica, requisitos de instalación y mantenimiento. La NOM-016-SSA3-2012 establece las características mínimas de infraestructura, mientras que la IEC 60601 define los requisitos de seguridad para equipos electromédicos. Esta evaluación es fundamental para garantizar la seguridad del paciente y el personal de salud.

MATERIALES, EQUIPAMIENTO Y/O REACTIVOS

- Planos arquitectónicos de área hospitalaria (proporcionados)
- Inventario de equipos médicos
- Normativas: NOM-016-SSA3-2012, IEC 60601-1
- Lista de verificación para evaluación
- Instrumentos de medición (multímetro, luxómetro)
- Cámara fotográfica
- Formato de reporte de evaluación

PROCEDIMIENTO O METODOLOGÍA

Preparación

- Revisar planos y documentación técnica
- Preparar instrumentos de medición
- Asignar roles dentro del equipo

Evaluación de infraestructura

- Verificar dimensiones y distribución de espacios
- Evaluar instalaciones eléctricas y de gases medicinales
- Medir niveles de iluminación y ventilación
- Documentar hallazgos con fotografías

Evaluación de equipamiento

- Verificar etiquetado y documentación de equipos
- Evaluar estado físico y ubicación
- Comprobar conexiones eléctricas y seguridad

• Registrar observaciones en formato

Análisis y reporte

- Compilar resultados de evaluación
- Identificar no conformidades
- Proponer acciones correctivas
- Elaborar reporte final

RESULTADOS ESPERADOS

Evaluación completa de infraestructura según normativa Identificación de no conformidades Registro fotográfico de hallazgos Propuestas de mejora fundamentadas

ANÁLISIS DE RESULTADOS

¿Qué aspectos de infraestructura presentan mayor riesgo?

¿Los equipos cumplen con los requisitos de seguridad eléctrica?

¿Qué mejoras son prioritarias para la seguridad del paciente?

¿Cómo impactan las deficiencias en la operación hospitalaria?

CONCLUSIONES Y REFLEXIONES

La evaluación sistemática de infraestructura y equipamiento es una función esencial del ingeniero clínico. Los estudiantes deben comprender la importancia de mantener estándares elevados de seguridad y calidad en el entorno hospitalario.

ACTIVIDADES COMPLEMENTARIAS

Diseñar un plan de mejoras con cronograma y presupuesto Investigar tecnologías emergentes para monitoreo continuo Elaborar manual de buenas prácticas para evaluación

EVALUACIÓN Y EVIDENCIAS DE APRENDIZAJE		
Criterios de evaluación	Completitud de la evaluación (30%)	
	Aplicación correcta de normativas (25%)	
Calidad de propuestas de mejora (25%)		
	Documentación y reporte (20%)	
Rúbricas o listas de	Lista de cotejo para cumplimiento normativo	
cotejo para valorar	Rúbrica de evaluación de tecnologías médicas	
desempeño	Rúbrica de responsabilidad ética profesional	
Formatos de reporte de	Formato de evaluación de dispositivos médicos	
prácticas	Plantilla de protocolos clínicos	
	Formato de análisis de riesgo-beneficio	

NOMBRE DE LA PRÁCTICA

COMPETENCIA DE LA PRÁCTICA

ESTRUCTURA ORGANIZACIONAL HOSPITALARIA

Identificar la estructura organizacional del departamento de ingeniería clínica mediante visita práctica para comprender el funcionamiento hospitalario con habilidades de comunicación efectiva.

FUNDAMENTO TÉORICO

La estructura organizacional hospitalaria comprende diferentes niveles jerárquicos y áreas funcionales. El departamento de ingeniería clínica se integra como un servicio de apoyo técnico especializado, responsable de la gestión de tecnología médica. Su organización incluye personal técnico, ingenieros clínicos, y especialistas en diferentes áreas tecnológicas. La comprensión de esta estructura es fundamental para el desempeño efectivo del ingeniero clínico.

MATERIALES, EQUIPAMIENTO Y/O REACTIVOS

- Guía de observación estructurada
- Cuestionario para entrevistas
- Libreta de campo
- Grabadora de voz (con autorización)
- Cámara fotográfica
- Organigrama hospitalario
- Formato de reporte de visita

PROCEDIMIENTO O METODOLOGÍA

Pre-visita

- Revisar organigrama hospitalario
- Preparar preguntas para entrevistas
- Establecer objetivos de observación

Recorrido hospitalario

- Visitar diferentes servicios hospitalarios
- Observar la interacción entre departamentos
- Identificar flujos de información y comunicación
- Documentar observaciones

Visita al departamento de ingeniería clínica

- Entrevista con personal del departamento
- Observación de actividades cotidianas
- Identificación de roles y responsabilidades
- Análisis de procesos de trabajo

Síntesis y análisis

- Compilar información recolectada
- Identificar relaciones organizacionales
- Elaborar diagrama de flujo de procesos

RESULTADOS ESPERADOS

Comprensión clara de la estructura organizacional Identificación de roles del ingeniero clínico Mapeo de procesos y flujos de información Reconocimiento de oportunidades de mejora

ANÁLISIS DE RESULTADOS

- ¿Cómo se integra el departamento de ingeniería clínica en la estructura hospitalaria?
- ¿Qué roles desempeña el ingeniero clínico en diferentes procesos?
- ¿Cuáles son los principales desafíos organizacionales identificados?
- ¿Cómo puede mejorarse la comunicación interdepartamental?

CONCLUSIONES Y REFLEXIONES

Los estudiantes deben comprender la importancia de la integración efectiva del ingeniero clínico en la estructura organizacional hospitalaria y desarrollar habilidades de comunicación para trabajar en equipos multidisciplinarios.

ACTIVIDADES COMPLEMENTARIAS

Diseñar un organigrama optimizado para el departamento de ingeniería clínica Proponer mejoras en los procesos de comunicación Investigar modelos organizacionales en otros países

EVALUACIÓN Y EVIDENCIAS DE APRENDIZAJE		
Criterios de evaluación	Calidad de observaciones (25%)	
	Análisis organizacional (30%)	
	Propuestas de mejora (25%)	
	Habilidades de comunicación (20%)	
Rúbricas o listas de	Lista de cotejo para cumplimiento normativo	
cotejo para valorar	Rúbrica de evaluación de tecnologías médicas	
desempeño	Rúbrica de responsabilidad ética profesional	
Formatos de reporte de	Formato de evaluación de dispositivos médicos	
prácticas	Plantilla de protocolos clínicos	
	Formato de análisis de riesgo-beneficio	

NOMBRE DE LA PRÁCTICA

COMPETENCIA DE LA PRÁCTICA

GESTIÓN DE INVENTARIO DE EQUIPO MÉDICO

Desarrollar un sistema de gestión de inventario de dispositivos médicos aplicando normativas de la OMS para optimizar la administración hospitalaria mediante trabajo colaborativo.

FUNDAMENTO TÉORICO

La gestión de inventario de equipo médico es una función crítica del departamento de ingeniería clínica. Incluye la identificación, clasificación, registro y seguimiento de todos los dispositivos médicos. La OMS ha establecido directrices para la gestión efectiva de inventarios, incluyendo criterios de clasificación por riesgo, códigos de identificación únicos, y sistemas de seguimiento del ciclo de vida de los equipos.

MATERIALES, EQUIPAMIENTO Y/O REACTIVOS

- Lista de equipos médicos (proporcionada)
- Directrices OMS para gestión de inventarios
- Software de base de datos (Excel o Access)
- Etiquetas de identificación
- Códigos de barras
- Lector de códigos de barras
- Formatos de registro de inventario

PROCEDIMIENTO O METODOLOGÍA

Clasificación de equipos

- Aplicar criterios de clasificación de la OMS
- Asignar códigos de identificación únicos
- Categorizar por nivel de riesgo y criticidad

Diseño de base de datos

- Crear estructura de base de datos
- Definir campos y relaciones
- Implementar sistema de codificación

Registro de equipos

- Ingresar información técnica de cada equipo
- Registrar ubicación y responsable
- Documentar historial de mantenimiento

Implementación de sistema de seguimiento

- Configurar alertas de mantenimiento
- Establecer reportes automáticos

• Crear indicadores de gestión

RESULTADOS ESPERADOS

Base de datos completa y funcional Sistema de codificación implementado Procedimientos de actualización establecidos Indicadores de gestión definidos

ANÁLISIS DE RESULTADOS

¿Qué beneficios aporta un sistema de inventario automatizado?

¿Cómo mejora la trazabilidad de los equipos médicos?

¿Qué indicadores son más útiles para la toma de decisiones?

¿Cómo puede integrarse con otros sistemas hospitalarios?

CONCLUSIONES Y REFLEXIONES

Un sistema eficiente de gestión de inventarios es fundamental para la administración adecuada de tecnologías sanitarias. Los estudiantes deben comprender la importancia de la documentación sistemática y el uso de tecnologías de información para optimizar procesos.

ACTIVIDADES COMPLEMENTARIAS

Diseñar un sistema de alertas por vencimiento de calibraciones Investigar tecnologías RFID para seguimiento automático Desarrollar dashboard de indicadores de gestión

EVALUACIÓN Y EVIDENCIAS DE APRENDIZAJE			
Criterios de evaluación	Completitud del inventario (25%)		
	Funcionalidad del sistema (30%)		
	Aplicación de normativas OMS (25%)		
	Trabajo en equipo (20%)		
Rúbricas o listas de	Lista de cotejo para cumplimiento normativo		
cotejo para valorar	Rúbrica de evaluación de tecnologías médicas		
desempeño	Rúbrica de responsabilidad ética profesional		
Formatos de reporte de	Formato de evaluación de dispositivos médicos		
prácticas	Plantilla de protocolos clínicos		
	Formato de análisis de riesgo-beneficio		

NOMBRE DE LA PRÁCTICA

COMPETENCIA DE LA PRÁCTICA

PROGRAMA DE MANTENIMIENTO PREVENTIVO

Diseñar un programa de mantenimiento preventivo de equipos médicos basado en estándares internacionales para garantizar la calidad de atención al paciente con enfoque de trabajo en equipo.

FUNDAMENTO TÉORICO

El mantenimiento preventivo de equipos médicos es esencial para garantizar su funcionamiento seguro y eficiente. Incluye inspecciones regulares, calibraciones, reemplazos programados y verificaciones de seguridad. Los estándares internacionales como IEC 62353 y las directrices de la OMS proporcionan marcos de referencia para el desarrollo de programas efectivos de mantenimiento preventivo.

MATERIALES, EQUIPAMIENTO Y/O REACTIVOS

- Manuales de equipos médicos
- Estándares IEC 62353, IEC 60601
- Directrices OMS de mantenimiento
- Software de programación
- Formatos de registro de mantenimiento
- Herramientas básicas de mantenimiento
- Instrumentos de medición

PROCEDIMIENTO O METODOLOGÍA

Análisis de equipos

- Identificar equipos críticos para mantenimiento
- Revisar recomendaciones del fabricante
- Establecer frecuencias de mantenimiento

Diseño del programa

- Crear cronograma de actividades
- Definir procedimientos específicos
- Asignar recursos y responsabilidades

Desarrollo de formatos

- Crear listas de verificación
- Diseñar registros de mantenimiento
- Establecer criterios de aceptación

Simulación de implementación

- Ejecutar procedimiento en equipo seleccionado
- Documentar hallazgos

Evaluar efectividad del programa

RESULTADOS ESPERADOS

Programa de mantenimiento preventivo completo Cronograma de actividades detallado Formatos y procedimientos estandarizados Registro de implementación piloto

ANÁLISIS DE RESULTADOS

¿Qué factores determinan la frecuencia de mantenimiento?

¿Cómo puede optimizarse el uso de recursos?

¿Qué indicadores miden la efectividad del programa?

¿Cómo contribuye el mantenimiento preventivo a la seguridad del paciente?

CONCLUSIONES Y REFLEXIONES

El mantenimiento preventivo es una inversión en seguridad y calidad. Los estudiantes deben comprender la importancia de la planificación sistemática y el cumplimiento riguroso de procedimientos para garantizar la confiabilidad de los equipos médicos.

ACTIVIDADES COMPLEMENTARIAS

Calcular el costo-beneficio del programa de mantenimiento Investigar tecnologías predictivas de mantenimiento Desarrollar plan de capacitación para personal técnico

EVALUACIÓN Y EVIDENCIAS DE APRENDIZAJE		
Criterios de evaluación	Completitud del programa (30%)	
Aplicación de estándares (25%)		
Viabilidad de implementación (25%)		
	Trabajo colaborativo (20%)	
Rúbricas o listas de	Lista de cotejo para cumplimiento normativo	
cotejo para valorar	Rúbrica de evaluación de tecnologías médicas	
desempeño	Rúbrica de responsabilidad ética profesional	
Formatos de reporte de	Formato de evaluación de dispositivos médicos	
prácticas	Plantilla de protocolos clínicos	
	Formato de análisis de riesgo-beneficio	

FUENTES DE INFORMACIÓN

Bronzino, J., Enderle, J., & Blanchard, S. (2012). *Introduction to biomedical engineering* (3rd ed.). Academic Press.

Cámara de Diputados del H. Congreso de la Unión. (2009, abril 30). Ley Federal sobre metrología y normalización.

https://www.gob.mx/cms/uploads/attachment/file/107522/LEYFEDERALSOBREMETROLOGIAYNORMALIZACION.pdf

Diario Oficial de la Federación. (2012, noviembre 29). NOM-001-SEDE-2012. Instalaciones eléctricas (utilización).

https://www.dof.gob.mx/nota_detalle.php?codigo=5280607&fecha=29/11/2012#gsc.tab=0

Diario Oficial de la Federación. (2013, enero 8). NORMA Oficial Mexicana NOM-016-SSA3-2012. Características mínimas de infraestructura y equipamiento de hospitales y consultorios de atención médica especializada.

https://www.dof.gob.mx/nota_detalle.php?codigo=5284306&fecha=08/01/2013#gsc.tab=0

Idanza, E. (2020). Clinical engineer handbook (2nd ed., Vol. 1). Academic Press. Jacques, S., & Christe, C. (2020). Introduction to clinical engineering. Academic Press. Organización Mundial de la Salud. (2012). Introducción a la gestión de inventarios de equipo médico (Serie de documentos técnicos de la OMS sobre dispositivos médicos). https://apps.who.int/iris/bitstream/handle/10665/44817/9789243501390_spa.pdf

Organización Mundial de la Salud. (2012). *Introducción al programa de mantenimiento de equipos médicos* (Serie de documentos técnicos de la OMS sobre dispositivos médicos). http://apps.who.int/iris/bitstream/handle/10665/44830/9789243501536 spa.pdf

Ortiz P., M. R., & Gaitán G., M. J. (2009). *Ingeniería biomédica y el sector salud* (1st ed., Vol. 1). Universidad Autónoma Metropolitana.

NORMAS TÉCNICAS APLICABLES

NOM-016-SSA3-2012 - Características mínimas de infraestructura y equipamiento de hospitales y consultorios de atención médica especializada

NOM-001-SEDE-2012 - Instalaciones Eléctricas (utilización)

NOM-241-SSA1-2012 - Buenas prácticas de fabricación para establecimientos dedicados a la fabricación de dispositivos médicos

ISO 9001:2015 - Sistemas de gestión de la calidad

ISO 13485 - Sistemas de gestión de la calidad para dispositivos médicos

IEC 60601-1 - Equipos electromédicos. Parte 1: Requisitos generales para la seguridad básica

IEC 62353 - Equipos electromédicos. Ensayos recurrentes y ensayos después de reparación de equipos electromédicos

ANSI/AAMI - Estándares de la Asociación para el Avance de la Instrumentación Médica

ANEXOS

Anexo 1: Formatos y Plantillas

A1.1 - Lista de Verificación para Evaluación Normativa

LISTA DE VERIFICACIÓN - CUMPLIMIENTO NORMATIVO

ASPECTO A EVALUAR	NORMA APLICABLE	CUMPLE	E NO CUMPLE	OBSERVACIONES
INFRAESTRUCTURA				
Dimensiones mínimas de áreas	NOM-016-SSA3- 2012			
Acabados y materiales	NOM-016-SSA3- 2012			
Sistemas de iluminación	NOM-016-SSA3- 2012			
Ventilación y climatización	NOM-016-SSA3- 2012			
INSTALACIONES ELÉCTRICAS				
Tableros y protecciones	NOM-001-SEDE- 2012			
Sistema de tierra física	NOM-001-SEDE- 2012			
Instalaciones de emergencia	NOM-001-SEDE- 2012			
EQUIPAMIENTO MÉDICO				
Etiquetado y documentación	IEC 60601-1			
Seguridad eléctrica	IEC 60601-1			
Calibración vigente	ISO 13485			
Evaluador:		Fecha:		

A1.2 - Formato de Reporte de Práctica

REPORTE DE PRÁCTICA DE LABORATORIO

Datos Generales:	
Nombre de la práctica:	
Fecha de realización:	
Integrantes del equipo:	
Facilitador:	
Objetivos:	
1. ————————————————————————————————————	
3.	
Metodología Aplicada:	
Resultados Obtenidos:	
Análisis de Resultados:	
Conclusiones:	
Bibliografía Consultada:	

Anexos: (fotografías, diagramas, tablas, etc.)

A1.3 - Plantilla de Inventario de Equipos Médicos

REGISTRO DE INVENTARIO - EQUIPO MÉDICO

Campo	Descripción	Ejemplo
Código UES	Código único institucional	UES-BM-001
Nombre del equipo	Denominación técnica	Monitor de Signos Vitales
Marca	Fabricante	Philips
Modelo	Número de modelo	IntelliVue MP5
Número de serie	Serie del fabricante	ES123456789
Clasificación riesgo	Según FDA/COFEPRIS	Clase II
Ubicación	Servicio/área	UCI - Cama 3
Responsable	Personal a cargo	Dr. Juan Pérez
Fecha adquisición	MM/DD/AAAA	01/15/2022
Valor de adquisición	En pesos mexicanos	\$125,000.00
Estado operativo	Operativo/No operativo	Operativo
Última calibración	Fecha último mantenimiento	06/15/2024
Próxima calibración	Fecha programada	12/15/2024
Observaciones	Comentarios adicionales	Requiere actualización de software

Anexo 2: Procedimientos de Seguridad

A2.1 - Protocolo de Seguridad Eléctrica

PROCEDIMIENTO PARA VERIFICACIÓN DE SEGURIDAD ELÉCTRICA

Objetivo: Verificar el cumplimiento de requisitos de seguridad eléctrica en equipos médicos según IEC 60601-1.

Equipos necesarios:

- Analizador de seguridad eléctrica
- Multímetro calibrado
- Registros de medición

Procedimiento:

- 1. Inspección visual (5 min)
 - o Verificar integridad del cable de alimentación
 - o Revisar conexiones y enchufes
 - o Comprobar etiquetado de seguridad
- 2. Medición de resistencia de tierra (10 min)

- o Conectar analizador entre tierra del equipo y tierra de referencia
- o Registrar valor (debe ser $< 0.2 \Omega$)
- o Documentar resultado

3. Medición de corriente de fuga (15 min)

- o Medir corriente de fuga a tierra
- o Medir corriente de fuga del paciente
- Verificar límites según norma
- 4. Documentación (5 min)
 - o Completar registro de verificación
 - o Aplicar etiqueta de estado
 - Actualizar base de datos

Criterios de aceptación:

- Resistencia de tierra: $< 0.2 \Omega$
- Corriente de fuga a tierra: < 500 μA
- Corriente de fuga del paciente: $< 10 \mu A (BF), < 50 \mu A (CF)$

A2.2 - Plan de Emergencias del Laboratorio

PLAN DE RESPUESTA A EMERGENCIAS

1. Emergencias Eléctricas

• Acción inmediata: Desenergizar equipo desde tablero principal

• Notificar: Facilitador y servicios de emergencia

Evaluar: Lesiones y daños materialesDocumentar: Incidente en bitácora

2. Incendios

• **Activar:** Alarma de incendio

Evacuar: Seguir rutas señalizadas
 Punto de reunión: Patio central

• No usar: Elevadores durante evacuación

3. Accidentes Personales

• Primeros auxilios: Aplicar según capacitación

• Servicios médicos: Llamar al 911

• **Informar:** A familiares y autoridades

• **Documentar:** En reporte de accidente

Teléfonos de Emergencia:

• Emergencias: 911

• Seguridad UES: (662) XXX-XXXX

• Servicios médicos: (662) XXX-XXXX

Anexo 3: Ejercicios y Problemas de Apoyo

A3.1 - Caso de Estudio: Hospital Regional

ESCENARIO: El Hospital Regional de 120 camas está implementando un nuevo departamento de ingeniería clínica. Actualmente tiene 450 equipos médicos distribuidos en diferentes servicios, sin un sistema centralizado de gestión.

DATOS PROPORCIONADOS:

• Presupuesto anual de mantenimiento: \$2,500,000 MXN

• Personal técnico disponible: 3 técnicos biomédicos

• Equipos críticos: 85 (ventiladores, monitores, bombas de infusión)

- Equipos semi-críticos: 180 (electrocardiógrafos, desfibriladores)
- Equipos no críticos: 185 (termómetros, baumanómetros)

PROBLEMAS A RESOLVER:

1. Gestión de Inventario

- Diseñar sistema de codificación única
- o Establecer criterios de clasificación por riesgo
- Proponer base de datos con campos mínimos

2. Programa de Mantenimiento

- o Calcular frecuencias de mantenimiento por categoría
- Estimar carga de trabajo para personal técnico
- o Desarrollar cronograma anual de actividades

3. Presupuesto y Recursos

- o Distribuir presupuesto por tipo de equipo
- o Calcular costo por equipo mantenido
- o Justificar necesidad de personal adicional

ENTREGABLES:

- Plan integral de gestión de tecnología médica
- Cronograma de implementación
- Análisis costo-beneficio

A3.2 - Ejercicio de Cálculo: Disponibilidad de Equipos

PROBLEMA: Un servicio de cuidados intensivos cuenta con 12 ventiladores mecánicos. El análisis histórico muestra:

- Tiempo promedio entre fallas: 2,200 horas
- Tiempo promedio de reparación: 8 horas
- Horas de operación por año: 8,760 horas

CALCULAR:

- 1. Disponibilidad inherente (Ai)
 - o Fórmula: Ai = MTBF / (MTBF + MTTR)
 - o Donde: MTBF = Mean Time Between Failures, MTTR = Mean Time To Repair
- 2. Número de fallas esperadas por año
 - o Fórmula: Fallas/año = Horas operación / MTBF
- 3. Horas de inactividad por año
 - o Fórmula: Inactividad = Número de fallas × MTTR
- 4. Impacto en la capacidad de atención
 - o Analizar efecto en número de camas disponibles

SOLUCIÓN:

- 1. Ai = 2,200 / (2,200 + 8) = 0.9964 = 99.64%
- 2. Fallas/año = $8,760 / 2,200 = 3.98 \approx 4 \text{ fallas}$
- 3. Inactividad = $4 \times 8 = 32$ horas/año
- 4. Impacto: 32/8760 = 0.36% de tiempo sin disponibilidad completa

A3.3 - Estudio de Caso: Incidente de Seguridad

SITUACIÓN: Durante una verificación rutinaria, se detectó que un electrocardiógrafo presenta una corriente de fuga de 750 μA, superando el límite de 500 μA establecido en la norma IEC 60601-1.

INFORMACIÓN ADICIONAL:

- El equipo tiene 5 años de antigüedad
- Última calibración hace 8 meses
- No hay reportes previos de problemas
- Se utiliza en consulta externa

PREGUNTAS PARA ANÁLISIS:

1. Evaluación de riesgo

- o ¿Cuál es el nivel de riesgo para el paciente?
- o ¿Qué factores contribuyen a esta condición?

2. Acciones inmediatas

- o ¿Qué medidas deben tomarse de inmediato?
- o ¿Cómo comunicar el problema a los usuarios?

3. Investigación de causas

- o ¿Qué verificaciones adicionales son necesarias?
- ¿Cómo determinar la causa raíz?

4. Acciones correctivas

- ¿Qué reparaciones son necesarias?
- ¿Cómo prevenir recurrencias?

5. Documentación

- ¿Qué registros deben mantenerse?
- o ¿Qué reportes son obligatorios?

RESPUESTA SUGERIDA:

- Retirar equipo del servicio inmediatamente
- Notificar al personal médico y dirección
- Realizar inspección detallada del cableado
- Verificar conexiones de tierra
- Calibrar después de reparación
- Documentar en bitácora de incidentes
- Revisar programa de mantenimiento preventivo

Anexo 4: Rúbricas de Evaluación

A4.1 - Rúbrica para Análisis de Casos

CRITERIO	EXCELENTE (10)	BUENO (8-9)	SATISFACTORIO (7)	INSUFICIENTE (6)
Identificación de normativas	Identifica todas las normas aplicables con precisión	Identifica la mayoría de las normas aplicables	Identifica algunas normas relevantes	No identifica normas o son incorrectas
Análisis de cumplimiento	Análisis detallado y fundamentado técnicamente	Análisis adecuado con buena base técnica	Análisis básico pero correcto	Análisis superficial o incorrecto
Propuestas de mejora	Propuestas viables, innovadoras y bien fundamentadas	Propuestas adecuadas y factibles	Propuestas básicas pero aplicables	Propuestas poco viables o sin fundamento
Trabajo en equipo	Excelente colaboración y distribución de tareas	Buena colaboración y organización	Colaboración adecuada	Poca colaboración o conflictos
Presentación	Comunicación clara, organizada y profesional	Buena comunicación y estructura	Comunicación adecuada	Comunicación deficiente

A4.2 - Rúbrica para Reportes Técnicos

CRITERIO	EXCELENTE (10)	BUENO (8-9)	SATISFACTORIO (7)	INSUFICIENTE (6)
Estructura y	Estructura completa,		Estructura básica	Estructura deficiente
formato	formato profesional	y formato	adecuada	
Contenido técnico	Información completa y técnicamente correcta	Información adecuada y correcta	Información básica correcta	Información incompleta o incorrecta
Análisis y conclusiones	Análisis profundo con conclusiones válidas	Buen análisis con conclusiones adecuadas	Análisis básico con conclusiones simples	Análisis superficial o conclusiones incorrectas
Referencias y citas	Referencias completas en formato APA	Referencias adecuadas con formato correcto	Algunas referencias con formato básico	Pocas referencias o formato incorrecto

CRITERIO EXCELENTE (10)

BUENO (8-9)

SATISFACTORIO (7) INSUFICIENTE (6)

Redacción y ortografía

Redacción clara sin errores

Buena redacción con mínimos errores

Redacción adecuada con algunos errores

Redacción deficiente con múltiples errores

A4.3 - Lista de Cotejo para Prácticas de Laboratorio

EVALUACIÓN DE DESEMPEÑO EN LABORATORIO

ASPECTO A EVALUAR	SÍ NO OBSERVACIONES
PREPARACIÓN	
Llegó puntual a la práctica	
Trajo material requerido	
Revisó procedimientos previamente	
EJECUCIÓN	
Siguió procedimientos correctamente	
Utilizó equipo adecuadamente	
Aplicó medidas de seguridad	
Registró datos correctamente	
COLABORACIÓN	
Participó activamente en equipo	
Comunicó efectivamente	
Apoyó a compañeros	
FINALIZACIÓN	
Limpió y organizó área de trabajo	
Entregó reporte en tiempo	
Cumplió con objetivos de práctica	
Calificación· / 10 Evaluador·	Fecha:

